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SUMMARY 

This  report describes an experiment of reinforced concrete beams under dynamic 
loadings. Specially designed scale beams were vibrated with sinusoidal and random 
inputs to the foundations. These beams were 1.5” x 3.5” x 25” i n  size. The 
coarse aggregates - fine aggregates and the reinforcing steel were carefully scaled 
i n  xder to simulate an ordinary reinforced concrete structure. Load-cycle curves 
for forty seven beams under sinusoidal tests and twenty one beams under random 
tests were measured. A few light weight, l ightly reinforced beams cut from 
commercial roof slabs were also tested. A literature survey of the state-of-the-art 
of reinforced concrete and its fatigue properties was also included. 0 utt.\oR 
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INTRODUCTION 

The trend i n  today's missile and rocket technology i s  toward bigger and more 
powerful vehicles. As a result of this upward trend, any building, either 
governmental at the launch site or the static firing pads, or residential, some 
distance away from these sites may frequently be subjected to high intensity sound. 
Undoubtedly, the safety of such buildings i n  the areas of intense noise and vibration 
i s  of great interest to many engineers and designers. Some of the most commonly used 
construction materials are plain and reinforced concrete. Therefore, a better 
knowledge of the dynamic properties of concrete i s  necessary i n  the design of 
buildings where material fatigue or severe vibration are encountered. 

The purpose of the experiment to be described i n  this report i s  to obtain useful data 
on reinforced concrete subjected to sinusoidal a n i  random dynamic loadings. 
Approximately one hundred fabricated reinforced concrete beams were tested. 
Fifteen percent of these beams were tested statically to determine their static strength. 
The remaining beams were tested to determine their dynamic fatigue characteristics. 
The beams were mounted, one at a time, on an electromagnetic shaker and were 
vibrated at their supports. Desired stress levels were maintained by monitoring the 
input signal to the shaker. The number of vibration cycles was established up, to 
the moment of the specimen's failure. The reinforcing wires imbedded i n  the 
concrete beams were also tested by a tensile machine to determine their yield and 
ultimate tensile strength, and to give a better understanding of the strength of the 
reinforced concrete specimen analytically . Some light weight commercial roof 
slabs were also tested. 

1 



2.0 TECHNICAL DISCUSSION 

Before the experimental work began, a literature survey was conducted to investigate 
the properties of concrete, and i n  particular, reinforced concrete. The survey 
covered most work performed in  the United States and abroad spanning roughly 
the past century. This survey shows: 

(1) 

(2) 

Random loading of concrete has not been investigated. 

Very l i t t le  work has been performed on concrete subjected to high speed, 
dynamic and complete reversal load. 

Most tests conducted up to date were of low speed, zero-to-maximum 
loading type. The test specimens were tensile reinforced only at one side. 
Test diriu w e i e  vLcuo;i)iIuIIy exieiiclad iui curriplate ieversul loud situations 
beyond the range of experimental supports. 

From the existing data on low speed, zero-to-maximum load tests, the 
following conclusions can be made: 

(3) 

(4) 

For plain concrete - 
(i) Ultimate compressive strength of the commonly used concrete i s  

between 3,500 to 5,000 psi. The ultimate tensile strength i s  
between 400 and 500 psi. 

(ii) The endurance l i m i t  i s  50 to 55 percent of the ultimate strength 

at 10 load cycles. However, i t  i s  doubtful that plain concrete 
possesses an endurance limit at least within 10 load cycles. 

Plain concrete fails in tension for reverse cycle loading. 

The S-N curve for plain concrete, zero-to-maximum load is 
shown in  Figure 1.  

6 
7 

(iii) 

(i 4 

For reinforced concrete - 
(i) Reinforced concrete may fai I i n  bondage, shear (diagonal tension), 

flexural compression, or fatigue of the reinforcement. 

Cracks in reinforced concrete do not always result i n  rapid failure. 

The endurance limit of reinforced concrete, subjected to zero-to- 
maximum loading, can be assumed to be 50 to 55 percent of 
the static ultimate strength. However, some tests indicate that 
40 percent should be used for a specimen which i s  weak in shear. 

(ii) 

(iii) 

2 



The dynamic ultimate strength i s  found some 30 to 40 percent 
higher than the static ultimcte strength, depending on the size and 
length of the specimens. 

The dynamic magnification factor, Q, (defined as the equivalent of 
the inverse of twice the damping ratio) i s  between 6 and 8.5. 

The rate of repeated loading at a rate much below resonance 
frequency appears to have no effect in  the fatigue strength. However, 
a very slow rate, for example, 10 cycles per minute, seems to 
decrease the fatigue strength. A period of rest between repeated 
loadings tends to restore strength. 

(vi i) The S-N curve for reinforced concrete, (one to two percent 
reinforcement) , with zero-to-maximum load i s  shown in  Figure 2. 

(5) Laboratory test data on fatigue properties may serve as a guide1 ine in structurai 
design. However, adverse corrosive conditions in  service could easily reduce 
the fatigue strength. 

The stress-strain relationship of concrete i s  not quite I inear. The stress-strain 
curve may be slightly concave or convex in nature, depending on the specimen's 
previous load-cycle history. The dynamic Young's modulus of  elasticity i s  
slightly higher than that for the static case. In the case of very fast rate of  
loading, such as in  a wave propagation experiment, a distinct increase, of  
the order of 25 percent, was reported in  the magnitude of  the dynamic 
Young's modulus relative to i t s  static value. 

The elasto-plastic nature and the nonlinear behavior of concrete make resonant 
frequency fatigue tests dif f icult .  

(6) 

(7) 

This literature survey indicates that there exists a severe lack of work i n  the f ield of 
dynamic properties of reinforced concrete structure. 

From the literature survey and from elementary engineering considerations, we 
observe that concrete i s  made of heterogeneous materials and i s  visco-elastic i n  
nature. The static strength i s  influenced by a number of factors such as, aggregate 
sizes, qualities of sand and stones, age, in i t ia l  concrete mix, curing, corrosion, and 
local stress concentration. In  the dynamic testing, a concrete specimen i s  also 
greatly affected by cracks, increase of internal damping, variations i n  Young's 
modulus, and change in effective cross-sectional area of the specimen. Undoubtedly, 
i t  i s  not an easy task to estimate the true dynamic and the true static strength of a 
concrete specimen. 

O n  the other hand, if the true values of the static and dynamic strengths were obtained, 
they may not be directly applicable to ordinary structural design calculations, where 
only simple stress-strain and stress-moment equations are available. Because of this 
reasoning, the experiment to  be described i n  this report w i l l  minimize the complicated 
nature of concrete under both static and dynamic tests in  order to use the simple 

3 



stress-strain and stress-moment relationships in the estimation of stress, moment, and 
l i fe cycles. 

The reinforced concrete is, therefore, assumed homogeneous, isotropic, and to have 
6 6 

a Young's modulus of 2.5 x 19 psi (2.0 x 10 psi for plain concrete) regardless of 
its previous vibration history. Small cracks usually result i n  a change of bending 
stiffenersE I, which, i n  turn, accounts for the lowering of the resonance frequency. 
Cracks also increase the internal damping, which affect the resonant dynamic 
magnification factor, Q, and therefore, the specimen response to  excitation. A l l  
stress, strain, resonant frequency, and bending moment calculations are made under 
the assumption that the concrete specimen i s  intact and without cracks. However, 
small cracks during a dynamic test do not mean failure. The criterion of failure i n  
the experiqent to be described i s  arbitrarily defined when one or more of the 
following conditions i s  obtained. 

(i) Complete failure of the specimen - specimen breaks into two halves. 

(ii) Complete failure of steel reinforcement. 

(iii) Severe ciamage results in changing of bending stiffeners, E I, and decreasing 
of the resonant frequency. A specimen i s  considered to have failed when the 
resoncmt frequency i s  reduced to half of i t s  in i t ia l  value. 

(iv) Significant amounts of broken concrete pieces fal l  from specimen. 

i 
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3 .O TEST SPECIMENS 

Two groups of test specimens were available for this experiment. 

Group (1): Forty f ive 3" x 1"  x 25" reinforced concrete beams were cut from 
three 24"x 1"  x 76" light weight concrete roof slabs, manufactured 
by the Alabama Cement Tile Company. The slab manufacturer provided 
the following specifications: 

Trade name: Alaslab 
Density: 12 Ib/sq.ft. 
Allowable load: 60 Ib/sq.ft. 
Age: More than 90 days 
Reinforcement: 

Aggregate: Light weight; high limestone component; maximum size 

4 x 4 - 14 gage welded mesh fabric at center of slab; 
not rusty . 

not greater than 3/8" 

Group (2): One hundred and thirty, 3-1/2" x 1-1/2" x 25", 2.52 percent 
reinforced concrete scale model beams were manufactured specifically 
for this experiment. The following cross-sectional diagram shows the 
dimensions of these beams 

Cross-Section of a Scale Model Beam 
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The table below gives a comparison of the scale model beam to a 
reinforced concrete beam of typical construction: 

6 inch 

~ ~~ ~ ~~~ 

Scale Factor 

Thickness of Beam 

Steel Diameter 

Steel 

% of Reinforcement 

Coarse aggregate 

Fine Aggregate 

Mixed Ratio 

+later gal./sack of cement 

Slump Test 

Distance, Center of Steel to 
Concrete Surface 

Cylinder Compression Test: 

(7 days) 

(28 days) 

Zement 

Curing Conditions 

6" Typical Beam 

1 

6" 

3/8" (0.38") 

Deformed Bar 

0.5 to 2.5% 

#4 to  1 ' '  Screen 

# 100 to # 4  Screen 

1 : 1 : 2 t 0 1  : 1-1/2:3 

5 

3" to 6" 

1 'I to  1 -1/2" 

2000 - 3000 psi 

4000 - 5000 psi 

Portland, Type I 

In Air 

Scale Model Beam 

1/4 
1 -1/2" 

12-1/2 gage (0.1 ' I )  

Smooth, Welded Mesh Fabric 

2.52% 

# 16 to 3/8" Screen 

if200 to #16 Screen 

1 : 1 : 2  

5.5 

7" to 8"# 

1 /4" 

.,. 
2730 psi .'' 

4770 psi"; 

Portland, Type I 

In  Air  

'"Average of 5 cylinders. Test performed by Barrow-Agee Laboratories, Inc, 

#Actual concrete mixing. 
Hu nt svi I I e . 

It should be noted that the material strength used in  the model beams was in  the 

compatible range of that of the ordinary concrete work. The scale model beams 
used i n  the sinusoidal tests were cured two to four months. These beams used in  
the random tests were cured six months or longer: 
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The aggregate composition of the scale model beams i s  shown in  the following 
histogram. The aggregate composition of a typical 1 : 1 : 2 mixed reinforced 
concrete beam of six inch thickness i s  also shown for comparison: 

2 
P) .- 
$ 
x 
4 
4- 
C 
Q) 
V 

Scale Model Beam 

A Typical 3" 
Beam of 1 :I  :2 Mix. 

- 
Screen Size 

Comparison of Aggregate Compositions of Scale Model 

6" Thick Beam 
Concrete Beam with a Typical 1 : 1 : 2 Mixed 

The calculations of the moment of inertia of the tensile reinforced concrete beam and 
its natural frequency are presented i n  Appendix A. 

Approximately 20 percent of the beams belonging to the group (1) category were 
found defective due to in i t ia l  cracks, cutting fault, and mishandling. Seven of the 
good specimens were tested statically. The ultimate strength was established at 
maximum static fail ing load. The remainder of the group (1) beams were tested 
dynamically with sinusoidal excitation at the excitation frequency adjusted close to, 
but less than the resonant frequency of the specimen. A large proportion of these 
beams were used to perfect this dynamic testing technique. Only a m a l l  number of 
these beams yielded meaningful results. 
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A few of the scale model beams in  the group (2) category were discarded due to  faults 
attributed to the manufacturing process. Eight of the good specimens were chosen 
randomly and were tested statically to establish the ultimate static strength. Forty six 
beams were tested dynamically with sinusoidal input to the beam supports. Twenty one 
beams were tested with random signal input. 

i 
I 

I 
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4.0 TEST METHODS 

In both the static and dynamic tests, a concrete beam specimen was simply supported 
at both ends, 23.5 inches apart. The static ultimate bending strength of the concrete 
beam was determined by the four point static loading method as shown i n  Figures 
3 and 4. This  method employed a five inch W channel at the middle of the beam 
causing the beam to fail, by static loading on the channel, at a section of uniform 
bending moment. The modulus of rupture i s  the calculated stress by the following 
familiar formula: 

Stress = M c / l  

where M = bending moment at fail ing load 

P 
4 -(L - aj - - 

P = static fail ing load 

L - - length of beam between supports 

a = height of the W channel 

1 = moment of inertia 

C = distance from outermost fiber to the neutral axis . 

The dynamic strength was determined, on the other hand, by vibrating the beams at 
their two end supports. The tests consisted of sinusoidal input and random input to 
the electromagnetic shaker (MB model C-25-H) which vibrated the beam supports. 
The test setup and the associated equipment used are shown in  Figures 5, 6, and 7. 

In  both static and dynamic tests, the concrete beam specimens were simply supported 
at both ends 23-1/2 inches apart. Metal f i l m  strain gages (Budd Company type 
C6-161) were used to measure strain of the beam i n  the early stages of dynamic testing. 
Small pieces of steel shim stock, 0.003 inch thick, were first attached to the concrete 
surface by an epoxy cement. The strain gages were then cemented to the shim stock. 
However, this method of determining strain was found to be very erratic. The strain 
meajurement was easily effected by local cracks i n  neighborhood of the strain gage. 

A second method of estimating the desired stress level was developed on the basis 
of relative acceleration. Appendix 8 shows that, for a pinned-pinned beam with 
moving supports, the fundamental mode shape, relative to the supports, i s  essentially 
a half sine wave, the same as for fixed supports, with sinusoidally distributed load 
applied throughout the entire beam length. The maximum stress at the outermost fiber 
of a beam specimen i s  a function of the applied bending moment. This bending 
moment i s  in turn a function of acceleration, frequency, and mode shape. It is, 
therefore, possible to control the desired stress at any point of the beam by carefully 
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monitoring the input to the shaker. This  second method of stress control was used 
throughout the rest of the test program. 

In  the sinusoidal dynamic test, the input to the shaker was adjusted continuously so that 
a constant relative displacement at the middle of the beam was maintained unti l the 
beam failed. The excitation frequency was monitored to  be about 5 to 10 percent 
higher than the beam resonant frequency. The continuous input adjustment was 
necessary since the resonant frequency was falling quite rapidly as a result of cracks and 
change in bending stiffeners. The peak stress at the maximum strained location - that is, 
at  the middle of the beam, was computed from the controlled relative acceleration, 
and was normalized by the modulus of rupture from the static test, to give the load 
ratio. This ratio, together with the excitation frequency and the total time of run, 
constituted a point in the load-cycle, (S-N), curve of the concrete specimen. 

However, i n  the random input dynamic test, the control of constant stress at mid-span 
of the beam was achieved i n  a different way. Instead, a broad band, 20-220 cycles, 
f lat spectrum of input was held constant throughout a test run. The relative 
acceleration response of the specimen was analyzed by passing the signal through a 
power spectral density analyzer with a narrow (20 cycles) variable center frequency 
band pass fi l ter. The spectral density of response and the center frequency of the 
f i l ter  were recorded sinultaneously on a dual channel visicorder. The peak value of 
the acceleration response 

This factor i s  the hypothetical sinusoidal acceleration that wou Id cause a G 
maximum bending moment to be applied to the beam, at the beam's resonance frequency, 
exactly large enough to induce failure at the first half of a vibration cycle. This 
ratio, gpeak/GuIt, the resonant frequencies, and the total time required to fa i l  a 

specimen constituted CI point, again, i n  the load-cycle curve. (For further details, 
see the following section .) 

at the onset of the test was normalized by a factor 
gpeak 

u l t '  

The ultimate tensile strength of the reinforcing wire was determined by an axial 
pulling machine. The stress-strain curves of several wires are presented in Figure 8. 
The ultimate tensile strength i s  calculated to be 68,000 psi. Figures 9 through 12 
show some typical test records of the concrete beams during sinusoidal dynamic tests. 
Figures 13 through 16 are a few examples of the beam data under random dynamic 
tests. The fi l ter center frequency and the beam's relative response were recorded 
simultaneously for the random dynamic tests i n  order to estimate the value of the 
resonant frequency. Figures 17 and 18 are typical response records of a beam, at  
low level scans for different numbers of accumulated vibration cycles. Comparison 
of these two figures indicates the magnitude change of resonance response of a beam. 

10 



CALCULATION OF STRESSES 

The calculation of stresses i n  the group (1) and group (2) test specimens, subjected to 
sinusoidal foundation excitation, are the same. Therefore, only those of group (2) 
wi I I be presented i n  greater detai I i n  this section. 

Group (2) Specimens, Sinusoidal Test: 

From Section 6.0, the average fail ing static load was 585 Ibs. 

P 
Maximum bending moment, M = 7 (L - a )  

rnax 

= 2850 in.-lb. 

Maximum Stress, 
M c  

max 
I 

- - 0 
max 

= 5650 psi . 
However, since relative acceleration of the beam specimen was being controlled i n  
the dynamic test, the ultimate strength of the specimen could be expressed in a more 

i .e., the hypothetical acceleration, convenient form as the acceleration, G 

which would produce a bending moment of 2850 in. - Ib. at the first half cycle 
of vi bration. 

ult; 

The theory of vibration of a simply supported beam with a moving foundation i s  presented 
i n  Appendix B. I t  i s  shown in this appendix that the realtive fundamental mode shape 
(that is, the absolute mode shape of the beam with respect to the motion of the 
support) i s  essentially a half-sine wave. Since the excitation frequency of the beam 
i s  either discrete i n  nature, as in the case of sinusoidal test, or of a limited band width, 
as i n  the random testing case, and since the even mode of vibration i s  suppressed as 
shown in  Appendix B, the fundamental mode i s  the predominant mode in response 
vibration, and i s  the most important mode i n  the stress analysis. We have, therefore, 
the following expression for the relative mode shape: 

1 1  



where y 
C 

X 

L 

W 

t 

TI  
I itus i ; ( x ,  i) 

I 

X iwt 
y s i n x -  e (pinned-pinned beam) 

C L 

muximum deflection of beam 

spanwi se coordinate 

length of beam 

excitation frequency = 2 IT f 

time . 

, and i s  
The maximum bending moment occurs at x = - L 

2 

2 a 
2 

= E l  m ax 
M 

a x  
rn ax 

W 

2 2  4 f  L 
max E l  max 

or y(x,t) = (For pinned-pinned end f ix i ty )  
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For a sinusoidal test, the frequency, f , in the above equation i s  the excitation 
frequency. However, in the random test, f i s  the resonant frequency of the beam 
specimen. 

To express the ultimate strength of the concrete beam in terms of acceleration, we 
assume that the static stress-strain relationship and that for the dynamic case are the 

same for the test specimen, and that y(x,t) must equal G a hypothetical 

static equivalent acceleration which would produce the required bending moment, 
M ,of 2850 in. - Ib. at the end of the first half cycle of vibration. And, for 

the given beam specimen of: 

max ult '  

max 

L = 23.5 inches 

E 

I = 0.426 in! . 
= 2.5 x 10 6 psi 

The value of Gult i s  calculated as 

1 2 

6 2 . 5 ~  10 xO.426 
2850 x 3x - 4 x  f2 x (23.5) - 

ul t  
G 

'teak ' 
= 1.53 x x f2 

At  the excitation frequencies of 80, 90, and 100 cps: 

at  80 cps 

at 90 cps 

- 
u l t  - 98 'peak 

- 124 'peak 

- at 100 cps. - 153 'peak 

G 

- 

For group (1) specimens: 

2 = 4.24 f 
u l t  peak 

G 

* 1  g unit = 386.4 in./sec. 2 Acceleration. 
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at 80 cps 

at 90 cps 

at 100 cps. 

- 
Or Gult - 27'1 Speak 

- 34'4 peak 

- 42'4 gpeak 

- 

- 

The following table gives the Fercent of load (dyvamic Ioad,/static load) and the 
required acceleration for various frequencies for the group (2) specimens under a 
sinusoidal dynamic test. 

TABLE I 

Required Relative Acceleration i n  (g peak) for Various 
Percentages of Loads and Excitation Frequencies. 

-2 2 
(Based on the Equation G = 1.53 x 10 

x f gpeak) \ ult, 100% *y 
% Loa 

115 

110 

105 

100 

95 

90 

85 

80 

75 

70 

65 

60 

55 

50 

I10 - 

1 66 

157 

148 

139 

130 

1 20 

110 

102 

'2.5 

105 - 

153 

1 45 

137 

129 

121 

113 

105 

96.5 

88.5 

80.5 

100 - 

153 

1 45 

38 

30 

122 

115 

107 

99.5 

92 

84 

76.5 

95 - 

145 

138 

131 

1 24 

117 

110 

103 

97 

90 

83 

76 

69 

90 - 

136 

1 30 

124 

118 

112 

105 

99 

93 

87 

81 

74.5 

68 

62 

85 

126 

1 22 

106 

111  

1 05 

100 

94 

88.5 

83 

77.2 

72 

66.: 

61 

55.5 

- 80 

13 

08 

03 

98 

93 

88 

83 

78 

73.5 

68.5 

64 

59 

54 

49 

- 75 

99 

95 

90.5 

86 

82 

77.5 

73 

69 

64.5 

60 

55 

52 

47 

43 

- 70 

86 

82.5 

79 

75 

71 

67.5 

64 

60 

55 

52.5 

49 

45 

41 

39.5 

65 

75 

71 .5 

68 

65 

62 

58.5 

55 

52 

48 

45.5 

42 

39 

36 

32.5 

- 60 

63 

60.5 

58 

55 

52 

49.5 

47 

44 

41 

38.5 

36 

33 

30 

27.5 

- 55 

53 

50.5 

48 

46 

44 

41 

39 

37 

35 

32 

30 

28 

25 

23 

- 
I 

50 

44 

42 

40 
39 

36 

34 

32 

30 

28.5 

26.5 

25 

23 

21 

19 

2 2  In terms of stress, G = 4fl  L u +/E c g  
ult  ul 

for pinned-pinned beam, and i t  can bf 
- - shown, see example 2 of Appendix C, that for clamped-lamped beam, G 

ult 2 2  f l  L u /Ecg. 
u l t  
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I The dynamic response of a concrete beam specimen under broad band random excitation 
i s  to be calculated next. The following assumptions are to be noted: 

I 
(1) Euler's equation for beam i s  used with negligible effects of rotary inertia 

and shear deformation. 

1 (2) Small deflection theory applied. 
i 

(3) Pinned-pinned end flexity. 

(4) Input spectrum i s  f lat within a bandwidth of 20 - 220 cycles and zero 
e I sew here. 

Only the fundamental mode of vibration i s  important. Higher modes are 
neglected. 

The dynamic magnification factor H(w) i s  defined as 

(5) 

(6) 

I 
where i s  the damping ratio, 

w = natural frequency. n 
And at resonance, i .e., o = w - 

n f  

1 
H(w) = Q = 3 

Q i s  also a function of damping ratio only. 

Since the resonant frequency i s  more affected by bending stiffness 
variations than variations in damping, the big drop i n  resonant frequency 
i s  mainly due tb the continuous change of bending stiffeners,E I, as the 
beam specimen cracks under severe vibration. 

(7) 

Considering only the fundamental mode, we have, for the beam response: 

where $= the generalized force 

%= the generalized spring constant 

15 



172 = the generalized mass 

w = fundamental natural frequency 

w = deflection response at  midspan of beam 

1 = subscript for fundamental mode. 

The generalized force can be expressed as 

where L = length of beam 

9 = mode shape of beam 

c1 

M = total massof beam . 
= mass per unit length of beam 

0 

The generalized m a s s n  . 1  i s  - M . 2 0  1 

6 and -f72 into equation of W (w) and differentiating twice, with 
1 1 

Substituting 

time, we get the response acceleration : 

2 
W, (w) = -W 4 Q -2 W 

O1 
l r o  

where W i s  the foundation acceleration. 
0 
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I .  

I 

The mean square response for the first resonant frequency is: 

16 2 
s a .  (w ) = - Q sw (w,) 
w1 lr 0 

2 

2 2 1.6 Q Sw (w,) 
0 

I 1.6 Sw (a,) 

( Q I 2  0 

where A f  = frequency band 

$ (w,) 
= resonant response power spectral density, g 2 /cps 

1 

SQJ (0 , )  = input power spectral density, g 2 /cps . 
0 

The rms acceleration response can be expressed as: 

grms 

2 1.6Q S w  (w,) 
0 

= 1.58 [$ (w,) Q f, 
0 

t 

17 



l -  

I 

The rms response of a simple structure to a narrow-band random excitation of a known 
rms level i s  equivalent to the response produced by sinusoidal excitation of the same 
rms level. If it i s  assumed that the peak-to-rms value of the stress time history i s  
3, the use of  a sinusoidal excitation that has a peak ampli,tude equal to three times 
the rms value of the random excitation should cause no 
caused by the random excitation. Thus, the equivalent 
can be expressed as: 

r 2  

'peak = 3 11.58 bo (0 , )  Q f 1 

= 4.75 $ (w,) Q f . [ 0 I l l 2  

failures that would not be 
s i  nu soi da I peak acceleration 

For an intact beam specimen at the onset of a random vibration test, f 1 = 81, 
Q = 8, we have 

The following table, calculates the g 

conditions. The inputs are i n  rms accelerations. 

by the above equation, for various input 
peak 

/ 
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Input RMS 
Accel. g 

TABLE 2 

Calculations of Response Power Spectral Density S o .  (w ) 
and Ratio of g /G for Various w l  peak ul t  
Random I npu ts. 

2.0 
3 .O 
4 .c 
6 .O 
8 .O 
10.0 
12.0 

2 
9 

4 
9 

36 
64 
100 
1 44 

1 L  t u  

0.02 
0.045 

0.18 
0.32 
0.50 
0.72 

n no v .VO 

I 0.141 

0.283 
0.415 
0.565 
0.707 
0.847 

' 0.212 
2.05 
4.61 
G.2G 
18.45 
32.80 
52.25 
73.80 

t Peak Response 
Accel. g 

17.1 
25.7 
34.3 
50.2 
68.4 
85.6 
102.6 

* 
'peak 

ul t  
G 

0.17 
0.26 
0.34 
0.50 
0.68 
0.85 
1.02 

?For flat spectrum between 20 to 220 cps, 

2 
s$q (w,) - - 2 0 0  

0 

$For virgin specimen, f = 81 cps, Q = 8. 

from previous calculations. - *G u l t  - 100*3 gpeak 

Figure 
taken directly from test beam No. 84. The acceleration signals were recorded on 
tapes simultaneously and were processed through an analyzer at a later date. 

19 shows a pair of typical input and response power spectral density curves 
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INSTRUMENTATION 

The instrumentation used for the performance of the tests i s  listed below: 

Bruel and Kjaer (B and K) Automatic Vibration Exciter Control, Model 1019. 

MB Electromagnetic Shaker, Model C25H, Type A, MB Mfg. Co. 

Ling Electromagnetic Shaker, Model 249, 

Electronic Frequency Counter, Hewlett and Packard Model 521 A R . 
Wyle IOKW Power Amplif ier. 

Ling Power Amplifier, PP 120-150 . 
Honeywell Visicorders, Models 1508 and 1012 . 
Oscilloscope, Tektronix Inc. Type 545A . 
Strain Gage Indicator, Strainsert Co. Model HW 1 . 
Endevco Accelerometers, Models 2213 c and 2226 . 
Spectral Dynamics Corp. Constant Output Level Adapter, Model SD 11 

Ling Automatic Spectral Density Equalizer and Analyzer, Model 80. 

Consolidated Electrodynamics Corp. Tape Recorder, Model GR 2800 - 
Spectral Dynamics Corp. Tracking Filters, Model SD 101 . 
Mosley Log Converters, Model 60D. 

Endevco Charge Amplifiers, Model 271 1 . 
Electro Instrument Differential Amplifier, Model A 208-2 . 

In each of the dynamic tests of the scale concrete beams, four accelerometers were 
employed. The first accelerometer was cemented to the shaker table and was used to 
check that the shaker was within its force limitation. The second accelerometer was 
cemented at the middle and on the top surface of the beam. The third accelerometer 
was cemented to the concrete specimen exactly at one of the pinned end supports. The 
accelerometer signals of the second and third accelerometers were fed into a 
differential amplifier to give the relative acceleration at midspan with respect to the 
support. A fourth accelerometer was cemented close to the second accelerometer to 
give the absolute acceleration at midspan. Typical experimental accelerations are 
presented i n  Figure 12. In some tests, the accelerations from the third or the fourth 
accelerometers were not recorded. It was noticed that for this accelerometer 
arrangement, the accelerations from the first and third accelerometers were not 
identical, and that the first accelerometer should not be used in place of the third 
to give, together with the second accelerometer, the relative acceleration. 

20 



I 7.0 TEST RESULTS 

I The following tables summarize the results of various tests: 

I Table No. 

3 

4 

Contents of Table 

Static tests of group (1) specimens (commercially fabricated 
roof slabs). 

Dynamic tests of group (1) specimens, with sinusoidal input to the 
shaker. 

5 Static tests of group (2) specimens (scale reinforced concrete beams). 

6 

7 

8 

Dynamic tests of group (2) specimens, with sinusoidal input to the 

Dynamic tests of group (2) speciments, with random input to the 
shaker. 

Test data sheet evaluated from a typical test record such as 
shown i n  Figure 13. 

-L-l, A-  
JIIUNLt . 

Figure 20 shows the plot of the stress-cycles (S-N) curve from data of Tables 1 and 
2. Figure 21 shows the S-N curve of the scale model beams under dynamic 
sinusoidal loads, Figure 22 shows the same model beams under dynamic random 
loads. Figure 23 shows the drops in resonance frequency and resonance dynamic 
magnification factor, Q, as a function of cycles of vibration for a typical beam 
under random excitation. 

I 
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TABLE 3 

I 

RUN NO. 

1 

2 

3 

4 

5 

6 

7 

Static Tests of Group (1) Specimens (Commercially 
Fabricated Roof Slabs) 

P, FAILING LOAD, Ibsl" 

79 

80 
79 

94 
75 

101 
96 

07.4 Average 

* * 2  Ibs. Estimated error 

- - P (L - a )  - 
4 

Moment at Static Failure, M 
max 

= 4 0 2 i n .  - Ib .  

Maximum Stress, CY 
max 

C 
max 
I 

M 
- - 

= 730 psi (Bending) . 
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TABLE 4 

Dynamic Test of Group (1) Specimens, wi 

Excitation frequency was about 10% 
resonant frequency. 

Run 
No. 

27 
32 

33 
34 

35 
36 

38 
39 

cps. 

1 00 
90 

80 

80 
80 

80 

80 
80 

27.5 
23 
19 

17 

22 

20 

20 
26 

+Estimated error f 5% 

%Modu Ius t 
of Rupture 

65 
67 
70 

63 

81 
74 
74 
96 

h Sinusoidal Input. 

ower than the specimen 

Timet I No. of Cycles* 
sec . at Rupture 

120 
6 

1 30 

80 

2 

230 
235 
0.5 

* Estimated error in counting total number of cycles 

5 25% below 1,060 cycles 

6 

f 5 %  above IO,OOO cycles 

15% between 1,000 cycles and 10,000 cycles 

12,000 
540 

10,400 

53,400 
1 60 

23,000 
23 , 400 

40 ~ 

1 

i 

All specimens failed. 

23 



TABLE 5 
Static Tests of Group (2) Specimens (Scale Reinforced 

Concrete Beams) 

Beam No. 

97 

67 

50 
1 1  
40 

88 

68 

1 00 

P, Failing Load, lbsf 

620 
580 
560 

600 
r; A5 
UT" 

525 
660 
5 75 

~ 

585 Ibs. (Average) 

* 10 Ibs. Estimated error 

- P Moment at static failing load, M max - 4 (L - a) 

- - - 5y (23.5 - 4) 

- - 2850 in .  - Ib. 
2 2  4 f  L 

ult E I g max - - , pinned-pinned beam. G 

2 
x 2850 4 x f2 x 23.5 - - 

2.5 x 10 6 x 0.426 x 386 

-2 2 
= 1.53x10 x f  g, peak - 

C 
max 

M 

ult I 
Ultimate stress, CT = 

2850 x 0.83 
0.426 

- - 5650 psi (Bending) . 
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TABLE 6 

Dynamic Tests of Group (2) Specimens, with 
Sinusoidal Input to the Shaker 

Excitation Frequeiicy was 5% to 13% Higher than the Specimen Resonance Frequency 

Beam 

4 

5 

6 

7 

8 

9 

10 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

t 
%Load 

45 

51 

60 

77 

85 

81 

73 

77 

81 

73 

68 

77 

73 

68 

64 

68 

73 

77 

81 

68 

64 

85 

73 

60 

64 

Total Cycles* - 
5.3 x lo6 

6 1.95 x 10 

1.51 x lo6 
9.45 104 
r )  OA .. ln4  
L . / V  A I U  

4 2 . 3 2 ~  10 

9 . 3 0 ~  103 

5 . s X  104 

7 . 2 3 ~  104 

9 . 8 ~  103 

i .15 105 

6 . s X  104 

1 . 3 8 ~  105 

4.37x 105 

2 . 6 4 ~  lo5 

2 . a X  105 

1 . o n  105 

1.41 105 

8.01 105 

1 . 9 8 ~  105 

1 . 9 5 ~  104 

1 . 1 6 8 ~  lo5 

5 

5 

5 

3.43x 10 

2 . 1 8 ~  10 

2.25 x 10 

Remarks 

Broke at 3” from center 

Broke at 1 .5” from center 

Severely cracked at center 

Severely crackedat center 

h k e  ct  !IB fr9m center 

Broke at 1/2” from center 

Severe I y cracked 

Broke 

Severely cracked, frequency down to 35- 

Severely cracked 

Severely cracked at center, 35- 

Broke 

Broke 

Severely cracked, frequency 35- 

Severely cracked, frequency 40- 

Severely cracked, frequency 40 - 
Severely cracked at center 

Cracked 4” from center, frequency 30- 

Cracked at  center, frequency 30- 

Cracked at center, frequency 30- 

Cracked 4.5’’ off center, frequency 25- 

Broke 

Broke 

Broke 8.0” from center, Cracked at center 

Severely cracked at center 
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Beam 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

49 

54 

55 

56 

57 

58 

59 

60 

%Loadt 

09 

81 

64 

60 

85 

81 

64 

60 

55 

51 

55 

116 

99 

99 

64 

64 

58 
58 

52 

52 

52 

TABLE 6 (Continued) 

Total Cycles * 
5 1.51 x 10 
5 2 . 5 4 ~  10 
5 7 . 6 9 ~  10 
5 4.95x 10 
4 2.16 x 10 
4 8 . 5 5 ~  10 
5 2.90x 10 
5 3.68 x 10 
5 3.86x 10 
5 4 . 1 2 ~  10 
5 3 . 2 9 ~  10 
3 8 . 2 5 ~  10 
4 1.09 x 10 
3 8 . 1 4 ~  10 
4 9.71 x 10 
5 4 . 5 4 ~  10 
5 4.49 x 10 .  
5 

5 

5 

5 

3 . 2 4 ~  10 

6 . 5 7 ~  10 

3 . 6 4 ~  10 

1.86 x 10 

Remarks 

Severely cracked at center 

Severely cracked at center 

Severely cracked at center, frequency 30- 

Frequency 38- 

Severely cracked at center 

Severely cracked at center 

Broke 1"  from center 

Severely cracked 1/2" from center 

Severely cracked at center 

Severely cracked 1/2" from center 

Broke 1'' from center 

Broke 1/2" from center 

Broke 2" from center 

Severely cracked at center 

Severely cracked at center 

Severely cracked at center 

Broke 2" from center 

Broke 1/2" from center 

Broke 1 "  from center 

Broke i n  center 

Broke 1/2" from center 

tEstirnated error i 5% 

*Estimated error i n  counting total number of cycles 

f 25% below 10,000 cycles 
f 15% between 10,000 and 100,000 cycles 
f 10% between 100,000 and 1,000,000 cycles 
f 5% above 1,000,000 cycles 
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Beam 
No. 

65 
66 

69 

70 
71 

72 

73 
74 
75 
76 
77 

78 
79 

80 

81 
82 

83 
84 
85 

86 
87 

TABLE 7 

Dynamic Tests of Group (2) Specimen, with Random Input 
(20-220 Cycles, Flat) to the Shaker 

Input t 
g rms 

2 
3 
6 

4.5 

2.5 
2.5 

10 

10 
8 

8 
6 

6 

4 
4 

10 
8 
6 

4 

2 
2 
12 

$ 
'peak 

u l t  
G 

t Estimated error + 
# Estimated error f 

0.17 

0.26 
0.50 

0.39 

0.25 
0.21 

0.85 
0.85 

0.68 

0.68 
0.50 

0.50 

0.34 

0.34 

0.85 
0.68 
0.50 
0.34 
0.17 
0.17 

1.02 

20% 
10% 

Approx. No. 
of Cycles * 
1 ,070,000 

2,396,000 

45 , 000 
427,000 

6,157,000 
I ,  I Y / , U W  

15,000 

5,000 
12,000 
22,000 

21,000 
42,000 
532,000 

367,000 

7,000 
24,000 
44,000 

300,000 
1 , 471,000 
1,646,000 

4,000 

.a 9 n - v  nnn 

Com men t s 

*Estimated error i n  counting total number of cycles: 

f 50% below 10,000 cycles 
f 
f 
f 5% above 1,000,000 cycles 

27 

25% between 10,000 and 100,000 cycles 
10% between 100,000 and 1,000,000 cycles 

Broke 

Did not fai l  

Broke 

Broke 

Did not fai l  

n - I  - 
D I U K e  

Broke 

Broke 

Broke 

Broke 

Broke 

Broke 

Broke 

Broke 

Broke 

Broke 

Broke 

Broke 

Did not fai l  

Did not fa i l  

Broke 



Time 

1840 

1841 

1843 

1847 

1851 

1855 

1905 

1910 

1 920 

1925 

1940 

1950 

1953 

1953 

TABLE 8 

Test Data Sheet Evaluated from a Typical Test Record 
Beam No. 84 Under Random Vibration 

A Time 

Minutes 

Start 

1 

2 

4 

4 

4 

10 

5 

10 

5 

15 

i o  
1 

End 

- 4 g rms input; $ (w,) - 
0 

s.. (u -)* 
w1 ’ 

g2/cps- 

5.2  

6.3 

7.5 

6 .O 
5 .O 
5.0 

5.2 

4.8 

5.5 

4.0 

4.0 

2 .o 

R =  I 

$v (0,) 
0 

Beam Broke 

65 

79 

94 

75 

62.5 

62.5 

65 

60 

69 

50 

50 

25 

2 0.08 g /cps. 

Q =p 1.6 

*Estimated Average Value during Time Interval. 

6.4 

7.0 

7.7 

6.8 

6.2 

6.2 

6.4 

6.1 

6.5 

5.6 

5.6 

3.5 

f *  

CPS 

100 

86 

82 

80 
80 
76 

74 

76 

74 

76 

72 

72 

60 

Total Cyc es 

6 , 000 

16,300 

36,000 

40,800 

45,600 

54,600 

98,600 

121,400 

165,600 

1 08 , 400 

253 , 400 

297,400 

300,400 
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8 .O CONC LUSl ONS 

The following conclusions are derived from the observation of the experimental tests. 
They are listed arbitrarily with no sequence of importance. 

(1) The stress-cycle, S-N, curves of the reinforced concrete for the dynamic tests 
differ quite markedly from that of the zero-to-maximum repeated loading. The 
differences are: 

6 
(i) Apparently no endurance l imit can be determined up to 10 cycles. 

(ii) The dynamic ultimate strength, from the sinusoidal dynamic test, i s  
at  least 20% higher than the static ultimate strength. (See Figure 21) 
Afigure of 30 to 40 percent higher, as suggested by some 
investigators, i s  reasonabie. 

(iii) The S-N curves of the dynamic tests are shifted to the right with a 
much steeper negative slope than that of the slow, repeated zero-to- 
maximum loading test. 

( 2) The concrete beams in  both groups (1) and (2) were found to be not qufFe 
uniform in  their physical properties. This was particularly true of the beams 
in  group ( 1 )  which were signified by the non-uniform static fail ing loads 
i n  the static test. Init ial cracks could be found i n  some of these beams. Some 
test data, therefore, was discarded when the beams tested were believed to 
be abnormal. 

, 

(3) The use of strain gages for strain measurement of the beams under dynamic 

tests was not successful due to surface cracks. 

( 4) It was observed, particularly from the random test records, that the dynamic 
magnification factor, . Q, of the reinforced concrete beams, changed 
continuously as the total number of vibration cycles increased. In  some cases, 
the value of Q dropped from the in i t ia l  value of 8 or 9 to 2 or 3 at 
the end of a test before the beam failed. Special tests for the Q measure- 
ment were performed by low level discrete frequency scans at intervals during 
a few fatigue tests. Typical results of these tests are presented i n  Figures 17 
and 18. The lowering of the Q values signified the increase of the internal 
damping of the test specimen. The variation of Q i n  the random tests was 
summarized in  Figures 24 through 26. 

* 
See No. 21 i n  Bibliography for example. 
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(5) The resonant frequency of the beam specimens lowered cont 
load cycles increased. This lowering could be due to : 

(i) 

(ii) 

Readjustment of end f ixi ty at the beg'nning of a test 

The gradual increase of damping. 

nuously as the 

run. 

(iii) Micro and/or macro cracks result i n  change of bending stiffeners, 
E I,of the test specimen. 

( 6) The control of the stress level, experienced by the specimen under dynamic 
test, by means of the relative acceleration method, proved to be reliable and 
made this experiment feasible. By this method, the test specimen could 
actually be vibrated at the resonant frequency i n  the sinusoidal test experiment. 
However, because of the frequency sensitivity at resonance, the continuous 
decrease of resonant frequency, change in  damping of the beam, and the non- 
linear vibration behavior of the specimen, off-resonant frequency excitation 
was employed. A vibration frequency of 10 to 15 percent below the 
specimen's fundamental frequency was used for the weaker group (1) 
specimen, and 5 to 10 percent higher frequency values were employed for 
the stronger group (2) specimen. The relative acceleration was noted to be 
much increased i n  the higher-than-resonant frequency test as the middle of 
the beam and the supports were vibrated out -of -phase. This off -resonance 
test should be noted to have no significant effect on the stress calculation. 
Figure B 1 of Appendix B shows that the mode shape i s  essentially a half- 
sine wave, as in the case of resonance, even when the ratio of excitation 
frequency to the resonance frequency, w/ol, i s  as low as 0.5, or as high 
as 2.0. 

(7) The accuracy in counting the vibration cycles of the test specimens became 
very diff icult i n  the very short test runs with very high loads. These difficulties 
are illustrated by Figure 11 where a test beam failed before a very high 
load of constant acceleration could be maintained. The cycles accuracy 
becomes much improved for lower load and long duration tests as shown in  
Figures 9, 10, and 12. 

(8) The stress-cycle (S-N) curves of the sinusoidal tests of the specimens in groups 
(1) and (2) are truly the commonly defined S-N curves, since the stress of each 
beam specimen was able to be maintained to a desired level throughout the entire 
duration of a test run, in spite of any change of the circumstance that might 
arrive from concrete cracking. However, i t  should be emphasized here that the 
stress-cycle curve of  the random test i s  not truly a S-N curve in the sense that 
the stress changed continuously due to the rapid decrease of the dynamic magni- 
fication factor, Q, as test went on. In this latter case, the fatigue factor i s  
defined only when the specimen i s  intact, uncracked, and experienced no 
severe vibration before. 
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1 9.0 COMMENTS 

Despite many difficulties encounter d i n  th is  experimental study of the dynamic 
fatigue properties of reinforced concrete, the test method appeared to be feasible and 
yielded meaningful data. The test specimens, specially manufactured for this experiment, 
were carefully scaled versions of a fu l l  size beam structure. The dynamic fatigue 
properties of the scaled specimens could therefore, be used for further structural design. 
The size factor was not investigated. However, using the knowledge gained from the 
steel fatigue problems, the author feels that CJ size factor of one could be safely used 
i n  evaluating larger concrete structures from this model beam study. Since the smaller 
size specimens are generally weaker due to the fact that they are more easily influenced 
by local stress concentration, the application of the test data taken from the smaller 
model beams to the larger structure i s  on the conservative side. 

The accuracy in estimating the total cycles of vibration at high dynamic iwds, in botli 
sinusoidal and random input tests, was quite low. The test specimens might break very 
rapidly, a matter of a few seconds to a few minutes. I t  also took time to bring the 
acceleraticn up to a desired level, and time to record data. However, this accuracy 
improved significantly for the long duration and low dynamic load tests. 

The desired acceleration level was controlled manually and was subject to human 
error and limitation. No automatic feedback control was employed, so that the shaker 
would not be greatly overloaded and damaged at the moment the test beam failed. 

The strength of the concrete varies significantly from one sample to another, from one 
batch of  mix to another, from one source of  material supply to another, and for many other 
reasons. The experimental data of  this report could be influenced by the material 
selection and specia! attention in fabrication. Similar tests should be performed for a 
better understanding of concrete under dynamic loads, on larger scale structure, with 
various qualities of  aggregates and cement, various mix ratio, various water content, 
and with and without additive. Nevertheless, the results obtained in this experiment 
provide a useful comparison o f  random and sinusoidal fatigue of concrete and extensive 
data on fatigue due to repeated single-direction loads. 

Appendix C presents four examples to illustrate the fatigue l i fe  estimation of concrete 
beams using data charts compiled from this experimental study. These examples are 
intended for beams subjected to random vibration with their end conditions either pinned 
or clamped. The usefulness of  these data charts can be further extended to the plate 
problems, such as concrete structural walls, by using the plate theories which are avail- 
able i n  many standard text books. 
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Figure 3. Simply Supported Concrete Beam under Static Test. 
Test Configuration 1 .  
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Figure 4: Simply Supported Concrete Beam Under Static Test. 
Test Configuration 2. 
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Figure 5 .  Concrete Beam Showing Supports i n  Detail and Typical 
Failure Mode of a Test Beam. 
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Figure 6. Equipment used in Dynamic Testing,of a Concrete Beam. 
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Figure 7: Dynamic Testing of a Concrete Beam Mounted on a MB C-25 HH Vibrator I 
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Figure 8 : Load-Elongation Curves of Commercial 12-1/2 Gage Wires 
(Diameter 0.10 inch) 
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Figure 9.  Run No. 34. Portion of a Typical Record of a Group (1)  
Specimen under Dynamic Sinusoidal Test. 
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Figure 10. Run No. 38. Portion of a Typical Record cf a Group ( 1 )  
Specimen under Dynamic Sinusoidal Test. 
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Figure 1 1 .  Run No. 39. A Typical Complete Record of a Group (1) 
Specimen under Dynamic Sinusoidal Test of very Short 
Duration. 
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BEAMNO. 16 

R E S O N A N C E  FREQ. 74 CPS, 

Figure 12.  Beam N o .  16. Portion of a Typical Record of a G r o u p  (2) 
Specimen under Dynamic Sinusoidal Test .  
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Figure 18. Low Level Scan Run No. 34 After 24,000 Cycles 
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I .  

APPENDIX A 

Calculations of Bending Moment, Area Moment of Inertia, 
and Fundamental Natural Frequency of the 

Scaled, Tensile Reinforced 
Concrete Beams 

A. Double Reinforced Concrete 

Dimension Force Diagram 

t T=A f 
I S S  

1 --! 

I + b 4  

- - 
S 

A 

- A' - 
S 

- - 
C 

E 

- - 
S 

f 

area of tensile steel 

area of compressive steel 

area of compressive concrete 

width of beam 

Strain Diagram 

e =f /E 

'1 
de'=f:/Es S 

e S =fc/Ec 

depth of member from compression face to the centroid of the 
tensile steel 

distance from concrete face to centroid of steel 

actual depth of beam 

Young's modulus of elasticity of steel 

Young's modulus of elasticity of concrete 

stress in longitudinal tensile steel 
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f '  = stress i n  longitudinal compressive steel 
S 

= stress i n  longitudinal compressive concrete outer fiber 

distance from compression face to the computed position of the 
neutral axis relative to depth d 

C 
f 

k = 

- - 
S 

C 

- - 
C 

C 

- - e 
S 

- E' - 
S 

= 3 0 x  106/2x lo6 = 15 
ES'Ec 

bending moment 

As/bd 

A' /bd 

total tension force i n  steel 

total compression force in steel 

S 

total compression force in concrete 

tensile strain of steel 

compressive strain of steel 

e = compressive strain of concrete 
C 

Force Relationship: 

T = A f  = f p b d  
s s  S 

- 1 - C + C  = A ' f '  + y f  k b d  
S C s s  C 

1 
f ' p ' b d  + - f k b d  . 

C 

- - 
S 2 c  

Taking 1 F = 0, we get T = C, or 
horiz. 

(3) 
f p = f i p ' + j - f k .  1 

S C 
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Strains Re I at i on shi p: 

k - - -  - -- -- - n f c  k d  
I? A - L d  1 - k  

P .  allriiii . . ii; G t e r  Cnmpressive Concrete Fiber - - fc'Ec 

is/' is Strain i n  Tensile Steel 
S 

or 

k d  -d '  f' 
S 

S 

f$ / E  
s -  - -  = Strain in  Compressive Steel - - 

d - k d  Strain i n  Tensile Steel fS'ES f 

or 

- ( 1 4  f . (kd - d') 
" k  C d ( l  - k) 

- 

- kd - d' . 
kd C 

- 

Substituting equations (4) and (5B) into (3), we get 

Of = np' k d - d ' f  + l f c k  1 
kd c np  k c 

d' 1 2  
n p  ( 1  - k) = np'(k - 7 )  + - 2 k 

d' 
(np) - (np)k = (npl) k - (np'  2) + 2 k2 
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d' (np) + np' (2) - (np + n p ' )  k - 1 k 2  = 0 2 

2 k + 2 ( n p  + np'  

In general, p = pi, equation (6) 

2 k + ( 4 n p ) k  - 

( 6) 
d' 

) k  - 2 n p  - 2np '  (T) = 0 

becomes: 

- 4 n p  f J ( 4 n ~ ) ~  + 8 n p  (7) d* ' 

k =  6 
L 

2 = .\1(2np) + (2np) (d*/d)' - (2np) . 

Note that equation (7) gives the position of the neutral axis. Taking the moment 
about the centroid of tensile steel, we have 

kd + f '  A' (d - d') M =  - f  1 k b d ( d - 3 )  
2 c  s s  

1 k k d - d '  f . p ' b d .  ( d - d ' )  + n 
kd C 

= - f  k b d - d  (1 - 7 )  2 c  

p' (d - d' ) k kd - d' 
= f C b d [ ! $ ( l - T )  + n kd  

M 
kd (3 - k) + 1 f =  n (kd - d') p' (d - d') 

bd[ 6 kd 

- 6 k M  - 
b (kd)2 (3 - k) + 6 b n  (kd - d') p' (d - d') 

Thus 
, 
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t 

(9) 
- 6 n ( l - k )  M - 

b (kd)2 (3 - k) + 6 b n (kd - d') p' (d - d') 

b (kd)' (3 - k) + 6 b n (kd - d') p' (d - d') S 

(10) - 6 n (kd - d') M - 
b d (kd)2 (3 - k) + 6 b d n (kd - d') p' (d - d') 

If f, i s  known from an experimental determination, a corresponding bending moment 

can be computed . 

f [b (kd)2 (3 - k) + 6 b n (kd - d') p' (d - d')] 
S 

M =  6 n ( l  - k )  . (11) 

For Model Concrete Beams : 

- - 
S 

f 67.9 ksi (steel wires used in model concrete beam) 

0.25 in. 

1.5 in. 

1.25 in. 

ES/Ec = 15 

-3 
p' = 0.72 = 7 . 2 ~  10 

67.9 ksi 

3.5 in. 

1.2 

0.108 

0.216 
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- - 40.0466 + 0.259' - 0.216 = d z  - 0.216 

- - 0.553 - 0.216 = 0.337 

kd - C.33? .y 1.25 = 0.421 in. 

( k d 2  = 0.177 

(3 - k) = 3 -0.337 = 2.663 

(kd -d ' )  = 0.421 - 0.25 = 0.171 

(d -d ' )  = 1.25 - 0.25 = 1.0 

(1 - k) = 1 - 0.337 = 0.663 . 

Using equation (1 1) , we get, 
c - 

f Lb  (kd)2 (3 - k) + 6 b n (kd - d') pi (d - d')] 
S 

6 n ( l  -k) M =  

- 67.9 x lo3 13.5 (0.177) (2.663) + 6 x 3.5 x 15 (0.171) 7.2 x (1 .Od - 
6 x  15 (0.663) 

- - 6 7 . 9 ~  lo3 11.652 + 388 x 

90 (0.663) 

- 67.9 103 [2.040] - 
59.7 

= 2.32 103 
= 2320 in. - Ib. 
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From the actual static loading of beam, the average fail ing load, P, was 583 Ibs. 
Therefore, the actual maximum bending moment i s  

- 1 1 1 - 7 P ( L - a )  = - P (23.5 - 4) = 7 (19.5) P 
max 4 M 

= 4.9 P 

= 4.9 x 583 = 2850 in. - Ib. 
The theoretical moment based on static ultimate strength of steel from axial loading 
conditions i s  fairly close to that from actual testing. The small discrepancy probably 
derives from the sources such us p h s f k  d&rmnt;nn nnd big deflection of beam specimen 
a t  loads causing stresses greater than the material yield point. 
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B. The Area Moment of Inertia 

i 

0.83" 
- N. A.  

I 
3.5" 

' - -  1 
The area moment of inertia of the scale beam is: 

3 I +  - - +(";")2 - (3.5 x 0.42)  

[ 0 + (n pl b d )  (0.17,12] + [0 + (n  pl bd) (0.83)2] 

= 0.0216 + 6.0646 + (15 x 7.2 x x 3.5 x 1.25)(0.1? x 0.83 2 ) 

= 0.0216 + 0.0646 + 0.473 x 0.719 

4 = 0.426 in. 
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C . Fundamental Natural Frequency: 

The scale concrete beam possesses the following engineering constants: 

Length: 23.5 inches between supports 

Width : 3.5 inches 

Depth : 1.5 inches 

Young’s Modulus of elasticity, E = 2.5 x 10 psi 6 

Area moment of inertia, I = 0.426 in. 4 

Density: 150 Ib./cu.ft. 

Weight per unit length, p = 0.503 Ib./in. 

For pinned-pinned end fixity, the fundamental natural frequency is: 

* d 3 8 6  x 2.5 x 10 6 x 0.426 ’ 
= (I)(&) 0.503 

= 81.4 cps . 
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APPENDIX B 

Vibration of a Beam on Moving Supports 

if the support motion U i s  the surne at each end. 

Thus, equation 2) becomes 
L 

The equation of motion of a beam wi th moving supports can be expressed in terms of the 
1 absolute motion, Y (x,t) of the beam or i n  

terms of the sum of the support motion U (t) and 
the relative deflection, W (x, t) of the beam. 
Thus, if the bending stiffness i s  E I, the 
mass per unit length i s  p A, and Y (x,t) = 
U (t) + W (x,t), we can write the equation of 

-<*- 
y------- 7 -  T 

I - -  ! x  
I 

c! 
I 
L motion as 

I 

- 0  + P A - -  a' Y a4 Y 

a x  a t2 
E l 4  

However, 

= o  a4 Y - - a4w a4 u 
a x  
- -  

4 , since 
a x  a x  4 

a 2 u  . 
= - p A  a2 w 

+ P A  2 
a t  a t2 

a4 w 
a x  4 E l  3) 

Two distinctly different forms of the solution to the problem are obtained depending on 
whether equation 1) or equation 3) i s  used. Briefly, use of equation 1) yields a closed 
form solution without expansion by the normal modes. T h i s  i s  due to the fact that two of the 
boundary conditions for this formulation specify non-zero conditions at the ends. The char- 
acteristic equations satisfying the boundary conditions are therefore not al I homogeneous. 
Thus, the usual method of defining normal mode frequencies by setting the determinant of 
these equations equal to zero can not be used. With equation 3), on the other hand, the 
solution i s  carried out i n  the usual manner for forced vibration and results i n  a series solution 
expressing the motion as the net summation of vibration in the normal modes. 
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, 

Although either method w i l l  produce equivalent results, the closed solution method has an 
advantage for simple computer calculation of the beam motion at any frequency. 

Therefore, using equation l ) ,  we assume the deflection Y takes the form: 

Y (x,t) = Y (x) sin w t  

where w i s  the frequency of excitation at the supports. 

e 

2 - - w Y (x) sin w t  . and - - a' Y 
e 

a tL  

Substituting the above quantities into l ) ,  we get 

or 

where 

or 

where 

2 Yll'l (x) sin w t  - - p A  w Y (x) sin ut = o E l  
4 Y'III (x) - K Y (x) = 0 

4 - p A  2 
E l  K -  

n 
L n 4  w K4 = (i) 7 

w1 

4 )  

5) 

, the fundamental frequency of a pinned-pinned beam. 2 r 4  E l  
P A  

O1 = (T) 

The general solution of 4) i s  

Y (x) = A cosh K x + B sinh K .x + C cos K x + D sin K x 

where A, 6, C and D are arbitrary constants. 
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Applying the boundary conditions: 

Y (0) = Y (L) = u 
Y"(0) = Y"(L) = 0, 

we get, after a few mathematical manipulations, 

i 

Thus, 

K L  
tanh - U 

2 2 

U K L  , tan - - 2 .  

B = - -  

D = -  

sin K x ]  .6) K L  sinh K x + cos K x + tan - Y (X) = 7 U [cosh K x - tanh - K L  
2 2 

For K L = n ~t, n = 1, 3, 5, the last term goes to infinity. This corresponds to 
the odd-order resonant frequencies of the simply supported beam since, from equation 5) 

w = K  2 - -  E l  - (y)2 * 

n P A  
Note that this shows that even-order modes are not excited by this symmetrical motion. 

To introduce damping, we let E become complex with a loss tangent 7 . T h i s  w i l l  
change K to a complex number which, for small 7 becomes: 

K * = K  - i - ! j - ~  

where K = undamped wave number 
= the loss factor 1 / Q.  

Then equation 6) becomes 
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or expanding these functions into their real and imaginary terms, 

Y(x) = a  + j b  

where a = - cosh K x cos 2 

sin K L + 
cos K L  + cosh (3 K L )  

sinh (+ K L  ) 
- - 

cos K L + cosh (2 K L ) 

- sinh K L 

cash K L + cos (+ K L ) 

sin (a K L 
+ 

cash K L + cos (3 K L )  4 

b = [sin K x  sinh (L K x )  2 4 

sinh (a K L  ) 

COS K L + cosh (+ K L )  
- 

. sin K L - 
cos K L  + cosh (a K L )  

sin (3 K L )  4 

cash K L  + c o s ( 2  K L )  
+ 

sinh K L  + 
cash K L  + cos ( a K L )  

i- COS K x cosh 

sin K x cosh 

cos K x sinh (* K x )  
I 

(2 K x) 
sinh K x cos 

(* x) 
- sinh K x sin 

sin K x cosh (a K x )  

cos K x sinh (2 K x )  

sinh K x cos ($ K x )  

cosh K x sin ( a K  x ) ]  
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The magnitude of the absolute motion is 

1/2 I Y (x)l = (a2 + b 2 )  . 
The magnitude of the relative motion i s  

I w (41 = 

Equation 8) has 

1/2 

[(a - U )2 + b 2 ]  . 

been evaluated for q = 0.01 and 0.125 loss factors typical for a l ightly 
rlnmyd metal beam and a reinforced concrete bean, respectively. The mode shape, nor- 
malized to unit maximl;m deflection, IS  shown in  Fiyul-e E l  5~ ~evern l  frequencies. The 
frequency response of the maximum absolute deflection and phase at the middle of the beam 
relative to the applied motion i s  shown in  Figure 82. 

A simpler form of equation 7a) through 7d), to define the approximate response at the 
middle of the beam at resonance, i s  obtained by using only the last term in equation 6). 
Wi th  a complex molulus i n  the tan K L term only, the resonant response at x = L/2 i s  
given approximately by 

sin h q K I 

- I  cos K L  

For low damping and K L = m IT, rn = 1, 3, 5 etc., a series expansion reduces this to a 
simpler approximation which i s  the same as the maximum relative displacement found by a 
normal mode solution 

The maximum response predicted by equation 9) i s  also shown on Figure 

The variation i n  stress along the beam i s  determined exactly by taking the second derivative 
of the mode shape in  equation 7a) through 7d). The bending stress i s  then: 

B2. 

u = E C Yl' (x) 

E = modulus of elasticity. 
where C = distame from centroidal axis to outer most "fiber" 

The second derivative, Y l ' ,  of equation 7a) through 7d) i s  not shown here for the sake of 
brevity. Numerical vclues were determined however by the computer program mentioned 
earlier. The results of this analysis was applied to the vibration fatigue tests of pinned- 
pinned concrete beam specimens. 
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with Loss Factor q = 0.125. 
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Figure 82. Absolute Deflection Y (x,t) at Mid Span of a Simply Supported Beam (X/L = 0.5) 
Wi th  Moving Supports and Loss Factor 7 . 
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APPENDIX C 

Illustrations of Fatigue Failure Estimation of Reinforced Concrete 
Under Random Loading 

Example 1 

Estimate the fatigue l i fe of a simply supported reinforced concrete beam, 12 in. x 
6 in. x 15 f t .  , subjected to random acoustic normal excitation. The maximum 
spectral density of acceleration response i s  measured a t  midspan to be 8 g2/cps. 
UI timate strength of the beam i s  assumed to be 4000 psi , and Q = 8. 

Calculations: 

8 2 3 
12" = 5.4 x 10 Ib. in. 

12 E I = 2 . 5 ~  10 x 

= 0.096 x 12 x 6 = 6.91 Ib./in. 3 p = 0.096 Ib./in. 

= frequency parameter 1 where CL 

= H for simply supported beam . 

3 I 

386 x 5.4 x 10 
1 2H 6.91 

= (&f 
= 8.4cps. 

- 
x 4000 - 12.6 Speak 

- - 4 ~ 8 . 4 ~  x 180L 

2 . 5 ~  106x 3 x 386 
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i 

- - 
9rms ' Assume that g peak 

= 3~ 3.64 = 10.9 g gpeak 

= 0.865 . ' eak P= - 
12.6 ul t G 

From Figure 22, the fatigue l i fe of the beam i s  between 1,200 to 20,000 cycles; 
or 190 to 3,180 seconds, assuming that the resonance frequency drops to half of 
i t s  ini t ial  value a t  t ime of specimen failure. 

Example 2 

Same beam as in Example 1 except clamped a t  both ends. Maximum acceleration 
spectral density a t  midspan is  1.5 g2/cps. Again, u = 4000 psi, and Q = 8. ul t 

From statics we know that the bending moment at the ends is twice that at the middle 
of the beam. We, therefore, assume that the maximum acceleration spectral density to 

2 be 6 g /cps. 

where a = 1 

- - 
fl 

4.730 for clamped-clamped beam . 

19.1 cps . 
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I 

a 2 y k f  t) 

2 a x  

The fundamental beam mode shape can be expressed as: 

2 
= 4 ( 7 )  Yc 

max 

(1-cos - 2Hx L 1 eiwt ' 

Y C  
Ykf t) = 

Differentiating with time twice we get, 

or 

yo(, t) 
1 
2 

- -  y k ,  t) = 
W 

Again , differentiating twice with spanwise coordinate x , we have: 

- i w t  2 H X  - 4 yc e cos - . a .2 L 

Let x = 8 or L, and ut = multiple of 2 r .  

2 

= 4(;) Ykf t) max 
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The maximum bending moment can be shown as: 

= E l  4(:)2 % y ( ~ , t )  max 
w 

max 1 ykf t) 

PL2 
y(x, t) = - 

m ax E I max 

m ax 
Ec 

Finally, we get, 

0 
- - f2 L2 

ul t ut t 
G 

E c g  

x 4000 - - (1 9. 1)2 (1 80)2 

2.5 x 106 x 3 x 386 

= 16.35 g 
peak ' 

i s  14.2 g . The response in  terms of rms acceleration i s  4.74 g , and 
rms 'peak 

Thus, we have 

= 0.87 = 14.2 
16.35 

ul t 
G 
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I 
1 .  

From Figure 22, the fatigue l i fe  of the beam i s  between 1,000 to 18,000 cycles; 
or 74 to 1330 seconds, i f  we assume that the resonance frequency drops to half 
o f  i t s  init ial value a t  time of  specimen failure. 

Example 3 

Same beam as Example 1 except the spectral density of acceleration response i s  
recorded as 1 g2/cps a t  time five minutes after the onset of the random acoustic 
excitation test. The dynamic magnification factor, Q, for a virgin specimen i s  assumed 
to be 8. Resonance frequency i s  7.6 cps at time of  recording. 

The theoretical natural frequency of  the virgin concrete beam specimen, from Example 1 , 
i s  U I C C ~ I G : ~ ~  8: 8 
bending stiffeners, E I,which.was a direct result ot some macro- OT riicrc - crcrkc in the 
concrete subjected to severe vibration. A frequency average of  8 .O cps i s  assumed for 
the first five minute period. The number of load cycles is: 

cps. This frequency drops to a lower value due to the change o f  

N = 8.0 x 5 x 60 = 2,400 cycles. 

eak 

ul t 
Now, we assume that a t  the onset of test, the ratio 

Figure 26, Q isapproximately 5.8 at 2,400cycles. 

equals 0.35. From G 

Since the excitation force i s  the same a t  onset of  test and at time five minutes later, 
we have , from page 17, 

1 .6Q2 
L 

or 

N - 
Onset 
of  test 

- - 

Onset 
o f  test 

5 Minutes 5 minutes 

2 1.9 g /cps. 
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I A t  the onset of test, we have, 

- - 
'peak 

1 /2 
3 x[; (1.9) ] 

From Example 1, we have G = 12.6, thus 
ul t 

eak 5 3  P = = 0.42 , 
12.6 

ul t 
G 

eak 
= 0.35, isnot  too far off. 

ul t G The init ial  assumption, 

eak 

ul t 
From Figure 22, for e = 0.42, the l i f e  cycles are approximately 20,000 

to 300,000; or, 3,180 to 47,700 seconds assuming that the resonance frequency 
drops to half i f  i t s  ini t ial  value a t  time of specimen failure. 

Example 4 

A concrete beam, similar in dimensions and support conditions to that of Example 1, 
reinforced by structural steel which runs parallel to the beamwise axis and i s  imbedded 
at the center of the concrete. A t  the beginning of a random vibration test, the response 

at  the middle of the beam i s  0.1 g /cps. Assume 'ult, tension 

i s  

2 = 400 psi, 

U = 5OOOpsi, and Q = 8. 
u 1 t, compression 

The ultimate strength of the beams in  the previous three examples was 4000 psi (tensile 
or compression, whichever was lower). This high strength indicated that the beams had 
their top and bottom surfa oes reinforced by tensile steel. 
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I '  
In  this final example, the beams may have the same amount of reinforcement as those 
in the previous examples. However, since the reinforcing steel i s  in the plane of the 
neutral axis of the beam, the tensile strength of the outermost fiber of the beam i s  
not benefited from the steel. We shall, therefore, analyze this last beam, based only 
on i t s  ultimate tensile strength. G can be shown to be 1.26 g 

f is s t i l l  8.4 cps 1 

u l t  peak ' 

i s  1.229. 
peak 

i s  0.97. 

i s  0.406 g, and g 
grms 

The ratio g 
peak 'GuI+ 

The estimated l i fe of the beam i s  between 400 to 6000 cycles. 

The purpose of this example i s  clear. The position o i  ihe t ~ ~ i - i f ~ i ~ ~ ~ ~ n t  i s  important 
when the specimen i s  subjected to a complex reverse loading process, such as 
sinusoidal or random vibrations. The percentage of reinforcement becomes of 
secondary importance. The beam i n  this last example would probably be severely 
cracked, but not necessarily completely broken, after the estimated vibration cycles. 
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